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A FORMULA SHEET IS INCLUDED ON PAGES 3-4

Put your name on all pages which you hand in, and number them. Write the total number of pages you
hand in on the first page. Write clearly and not with pencil or red pen. You can answer in English or Dutch.
Always motivate your answers. You get 10 points for free. Success!

Problem 1 (30 pt)
Consider the morphological skeleton of a binary image X by a structuring element B. Assume that the
structuring element contains the origin: 0 = (0,0) € B.

a. Prove that SK(X) = 0 if B = {0}
b. Consider the case that the input image X is identical to the structuring element B. Prove that

@ ifn=0
Spu(B)=¢B ifn=1
p ifn>2

Give a geometrical interprétation of this result.

¢. Define a skeleton function skf(X) which can be used as a compact way to encode all skeleton sets
Sn(X),n=0,1,...,N.

d. The input image X can be exactly reconstructed from its skeleton sets Sy, (X) by:

N
x=Js&X)oB

n=0

Describe (in a diagram or by using pseudocde) a recursive implementation implementation of this
formula.
e. Describe a practical application of morphological skeletonization.

Problem 2 (30 pt)
Linear shift-invariant filtering of an image f (=, y) in the frequency domain is defined as a multiplication:

G(u,v) = H(u,v) F(u,v). ¢))

Here F'(u,v) and G(u,v) are the 2-D Fourier transforms of the input and output image, respectively, and
H(u,v) is the filter transfer function. An example filter is the ideal highpass filter IHPF), defined by

0 ifD(u,v) < Dy
H —
(w) {1 if D(u,v) > Do

Here D(u, v) is the distance of the point (, v) to the origin of the frequency domain, and Dy is the cut-off
radius; see Figure 1.
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FIGURE 1: Left and middle: perspective plot and image representation of a 2-D IHPF. Right: representation of a 1-D
IHPF in the spatial domain.

a. What is the purpose of highpass filtering?

b. Give the general formula corresponding to equation (1) which represents the filtering operation in the
spatial domain.

¢. Consider a one-dimensional IHPF, that is, H(u) = 0 for —Do < u < Dy and H(u) = 1 elsewhere.
Show that the corresponding spatial representation k() is given by

h(z) = é(z) — 2Dy sinc (2Dg x) )

A graph of h(z) is shown in Figure 1(c).

d. A typical artefact caused by IHPF is ringing. Explain this effect by considering the 1-D spatial repre-
sentation of this filter, as given by equation (2).

e. How do the ringing artefacts change when the cut-off radius Dy is increased?

Problem 3 (30 pt)
In this problem we consider image segmentation.

a. The main approaches to segmentation can be divided into edge-based and region-based. Explain the
difference between these two approaches. Give one example of each approach, with a clarification of
the basic computations involved.

b. Another subdivision of segmentation algorithms is into global and local ones. Again explain the dif-
ference between these two approaches, and give one example of each.

¢. Several segmentation algorithms require threshold selection. Explain the principles of Otsu’s method
for threshold selection, and discuss for which image types it will give better results then heuristic
threshold selection.

(Formula sheet on next page)
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Formula sheet

Co-occurrence matrix g(i,5) = {no. of pixel pairs with grey levels (z;, z;) satisfying predicate @}, 1 <
t,j <L

Convolution, 2-D discrete (fxh)(z,y) = XM 0 N1 f(m,n) h(z — m,y — n),
forz=0,1,2,...,. M—-1,y=0,1,2,...,N—1

Convolution Theorem, 2-D discrete F{f * h}(u,v) = F(u,v) H(u,v)

Distance measures Euclidean: D.(p, ¢) = v/(p1 — ¢1)% + (p2 — ¢2)?, City-block: D4(p, q) = |p1 — ¢1|+
|p2 — 2|, Chessboard: Dg(p, ¢) = max(|p1 — q1|, |[p2 — ¢z2|)

Entropy, source H = — ijl P(a;) log P(a;)

Entropy, estimated for L-level image: H = — Zf;é pr(rx) logy pr(rk)

213
Error, root-mean square e, = [ T M Ny ( f(z,y) — f(=, y)) ]
Exponentials €' = cosz +isinz; cosz = (e® +e7%%)/2; sinz = (e® — e7®) /24
Filter, inverse f = f + H™!n, Fi(u,v) = F(u,v) + -Z—EZ—Z%

Filter, parametric Wiener f = (H'H + K I)~ ' Htg, F(u,v) = [Wi();‘—l}_%(] G(u,v)

(o]

Fourier series of signal with period T" f(t) = Y222 ___ ¢, "“T"t, with Fourier coefficients:
en =1k [T10, F(t) et dt, n=0,41,42,...

Fourier transform 1-D (continuous) F(p) = [ f(t) e "™+t dt

Fourier transform 1-D, inverse (continuous) f(t) = [ F(u) ™™ dp

Fourier Transform, 2-D Discrete F(u,v) = Z E o f(z,y) e~i2r(ua/M+vy/N)
foru=0,1,2,..., M —1,v=0,1,2,. N

Fourier Transform, 2-D Inverse Discrete f(z,y) = siv Soorg' Soo o F(u,v) e z/M+vy/N)
fore =0,1,2,...,M—1,y=0,1,...,N—1

Fourier spectrum Fourier transform of f(z, y): F(u,v) = R(u,v)+i I(u,v), Fourier spectrum: |F'(u,v)| =
I(u,v

/R2(u,v) + I?(u,v), phase angle: ¢(u,v) = a.rctan(R e )

i & . N2 2
Gaussian function mean p, variance 0?: Go(z) = —7=¢ (=B} [0

Gradient Vf(z,y) = (Bf 28]

Bz By
Histogram h(m) = #{(z,y) € D : f(z,y) = m}. Cumulative histogram: P(¢) = 3¢ _ h(m)
Impulse, discrete §(0) = 1,6(z) = 0 for z € N\ {0}
Impulse, continuous §(co) = 1,8(z) = 0 for z # 0, with [ f(£) 6(t — to) dt = f(to)
Impulse train sar(t) = > oo §(t — nAT), with Fourier transform S(1) = w5 Yo o0 01t — 725)
Laplacian V?2f(z,y) = 24 + 2 —i

Laplacian-of-Gaussian VG, (z,y) = —=%; (1 - 2L22-> e 207 (p2 = g2 4 g2)

wo
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Morphology

Dilation 54(X) = X & A=Uqes Xo = Usex Az = {h € B A, NX £0},

where Xp, = {x +h:z € X}, heEandA—{——a.aeA}
Erosion 4(X) =X 0 A=(\ycp X—a={h€E: A, C X}
Opening y4(X) =X oA := (X0 A)® A= dsea(X)
Closing pa(X)=XoeA:= (XD A)O A=¢e40a(X)
Hit-or-miss transform X ®(B1, B2) = (X © B1) N (X° O By)
Thinning X ® B = X\(X ®B), Thickening X ® B = X U (X ®B)

Morphological reconstruction Marker F', mask G, structuring element B:
Xo=F, X, = (Xx— 1@3)00 k=1,2,3,.

Morphological skeleton Image X, structuring element B: SK(X) = Un_0

n(X),

Sn(X) = X © B\ (X © B) o B, where X © B = X and N is the largest integer such that

Sn(X) #0
Grey value dilation (f ® b)(z,y) = (ntliach [f(z — s,y —t) +b(s,t)]
Grey value erosion (£ ©8)(z,y) = min, [f(z+ s,y +1) = b(s, )
Grey value opening fob=(fOb) Db
Grey value closing feb= (f®b)Ob
Morphological gradient g = (f ®b) — (f ©b)
Top-hat filter Tha, = f — (f o b), Bottom-hat filter By, = (f @ b) —

Sampling of continuous function f(2): f(t) = f(t) sAT(t) =% f(®)8@E—nAT).

Fourier transform of sampled function: F'(p) = =5 Y ome oo F(1 — 25)

n=——00

Sampling theorem Signal f(t), bandwidth ftmax: If 25 > 2pmax» £ () = Dono

Tl:—OO

Sampling: downsampling by a factor of 2: |2 (ao, a1, as, ..., asn—1) = (a0, a2,a4,...,

f(nAT) sinc [ —nal.

a2N—2)

Sampling: upsampling by a factor of 2: T2 (ao, ai,az,. .. ,aN_]_) = (ao,O, ai,0,a9,0,..., aN_]_,O)

Set, circularity ratio R, = %&£ of set with area A, perimeter P

Set, diameter Diam(B) = max [D(p;, p;)] with p;, p; on the boundary B and D a distance measure
v

Sine function sinc (z) = 222 when & # 0, and sinc (0) = 1. If () = Afor —W/2 < t < W/2 and
zero elswhere (block s1gna1) then its Fourier transform is F'(1) = A Wsinc (u W)

Spatial moments of an M x N image f(z,y): mp = 2 Zy o 2Py f(x,y),

Statistical moments of distribution p(i): s, = Y r o (6 — m)"' @), m=r,

Signal-to-noise ratio, mean-square SNR,s = Selo' Dy S@)” .
S e nl(f(r,y —f(z.w))

Wavelet decomposition with low pass filter hg, band pass filter hy. Forj =1,...,

" ip(3)

J:

p,¢=0,1,2,...

Approximation: cj = HCj_l =9 (h¢ * Cj_l); Detail: dj = GCj_l =]q (h’dl * Cj_l)

Wavelet reconstruction with low pass filter 74, band pass filter hy. Forj = J,J — 1,

Cj—1 = 77,¢, * (Tg Cj) + E¢ * (TZ dj)

R i

Wavelet, Haar basis hy = J=(1,1), hy = 75(1,—1), he = J5(1,1), hy = Z5(1,-1)

)



